Abstract Submitted for the apr97 Meeting of The American Physical Society

Sorting Category: I.6

The Search for Rigid Triaxiality in Pt with GEANIE L.A. BERNSTEIN, D.E. ARCHER, J.A. BECKER, W. YOUNES, LLNL, D.M. DRAKE, G.D. JOHNS, R.O. NELSON, LANL¹ — Rigid triaxial ($\gamma \neq n \times 60^{\circ}$) nuclear motion has never been definitively observed. Total Routhian Surface calculations predict a transition from γ -soft to γ -rigid rotational motion at $\hbar\omega\approx0.2$ MeV in $^{188-196}$ Pt (Z=78) nuclei. Theoretical signatures of this transition include B(E2) values and branching ratios between off-yrast and yrast states at moderate ($J \leq 10$ \hbar) spin. The transition to rigid triaxiality has remained unobservable in Pt nuclei since the (n,γ) reactions used to study these nuclei populates states at low-spin (J < $4\hbar$). The combination of the GEANIE array and the LANSCE/WNR Spallation Neutron Facility enables observation of the signatures of the transition via $Pt(n,xn\gamma)$ reactions and the techniques of coincident spectroscopy with a large multi-Ge array. The results of a test run using a partial implementation of GEANIE and a ¹⁹⁶Pt target will be presented and compared to the predictions of several theoretical models.

¹This work is supported by the U.S. Department of Energy under contract numbers W-7405-ENG-48 (LLNL) and W-4705-ENG-36 (LANL).

		Lee Bernstein
X	Prefer Oral Session	bernstein2@llnl.gov
	Prefer Poster Session	Lawrence Livermore National Lab

Date submitted: January 17, 1997 Electronic form version 1.2